ONC PRE-DECISIONAL DOCUMENT- NOT FOR DISTRIBUTION
Federal Health Architecture (FHA) Program
Federal Health Architecture (FHA) Program
	[image:]
	Office of the National Coordinator for Health IT
Federal Health Architecture
Program Management Office

	
	

	Federal Health Architecture
Federal Health Information Model
Information Modeling Style Guide

	
	Version 1.0
Draft, as of 10/7/14

CONTENTS
PAGE
Introduction	3
Purpose	3
Authority	3
Applicability	3
Compliance	3
Assumptions	3
Overview	3
1.	Conventions	3
Packages	3
Names	4
Optionality	5
Null values	6
Source Tracing	7
2.	Patterns	7
Properties & Classes	7
Data Types	8
Explicit Properties & Coded Types	8
Entity-Role Pattern	8
Absence	8
Laterality	9
Concept Post-Coordination	10
Appendices	11
Appendix A: FHIM Model Classification	11
Conceptual Models	11
Logical Models	12
Physical Models	14
Comparisons among Model types	14
The FHIM Kind of Model	15
Appendix B: Terms and Abbreviations	16

[bookmark: _Toc400456663]Introduction
[bookmark: _Toc400456664]Purpose
This document is a guide to styles and conventions used in the Federal Health Information Model (FHIM) modeling to help modelers make consistent choices for representing concepts.
[bookmark: _Toc400456665]Authority
The Federal Health Architecture Office of the National Coordinator (ONC) for Health Information Technology (HIT) is the organization controlling changes and issuances of this guidance.
[bookmark: _Toc400456666]Applicability
There may be exceptions to these guidelines in cases where there are reasons to depart from them.
[bookmark: _Toc400456667]Compliance
Federal agencies are expected to use communication standards that conform to or are derived from the FHIM when exchanging health information. Specific criteria will be defined with the implementation use cases. Governance of compliance is the responsibility of the Office of the National Coordinator.
[bookmark: _Toc400456668]Assumptions
The ONC HIT uses Model Driven Health Tools for information modeling (a.k.a. software engineering diagramming), following Unified Modeling Language (UML) 2.2. The team currently uses IBM™ Rational Software Architect® (RSA) version 8.5.1.
[bookmark: _Toc400456669]Overview
The FHIM diagram classification is in Appendix A. A list of all abbreviations used throughout is in Appendix B. Core standard UML stereotypes are listed in Appendix C. Other documents referenced are listed in Appendix D.

1. [bookmark: _Toc400456670]Conventions
[bookmark: _Toc400456671]Packages
As the healthcare domain is very large, it is convenient to partition the domain into smaller portions for consideration. These portions correlate with UML packages, in which related classes will be stored. Additional packages are used to store data types (Datatypes) or shared constructs (Common).
Packages are an artificial grouping of portions of the healthcare domain; the FHIM is to be considered the union of the packages. Packages also form the basis of version control; that is, FHIM modelers will check out and check in work at the package level.
While package boundaries are logically void of meaning and have no effect on the semantics of the model, they do affect publication. When a package is published, it may “depend” on other packages—if it contains classes from other packages. The Common domain is designed to minimize these dependencies by collecting commonly reused elements in one place: many domains will depend on Common, but they should not depend on much more.
The reason for minimizing dependencies is that for both document publication and code generation, it is helpful to be able to implement part of the model without having to pull in other parts that may be irrelevant or incomplete. It is possible to select parts of packages for publication, but it is a manual process that may be error-prone: it’s best to design packages that minimize the amount of processing where possible.
We adopt the following conventions:
1. Packages must have simple generic names (e.g., “Laboratory”), excluding contextual and technical annotations.
2. Package names must exclude spaces, underscores, and other punctuation.
3. Each package shall be saved in its own file to support version control. The name of the file shall be identical to the package name. In RSA, the primary model file is given the .emx extension (e.g., “FHIM.emx”). Domain packages are saved as linked sub-files (model fragments). In RSM, these sub-files have .efx extension (e.g., “VitalSigns.efx”).
4. All FHIM class names must be unique. A package is a namespace, and two packages, technically, may contain classes with identical names. However, in the interest of clarity, all FHIM class names must be unique in the FHIM.
5. A package may contain other packages, in cases where a subdomain is evident.
6. A package must contain a main diagram with the same name as the package—except prefixed with an underscore (“_”) to make it appear at the top of the list of items the package contains. Additional diagrams may be in the package: a glyph/icon for each these should be embedded in the main diagram so that it is possible to get an idea of the scope of the package from a single diagram, however lacking in detail that diagram may be.

[bookmark: _Toc400456672]Names
Package, class, and diagram names are upper camel case, capitalizing each word (e.g., “ReportableResult”). Property names are lower camel case, skipping capitalization on the first word (e.g., “observationMethod”). Stereotype names follow the convention of the respectively adorned element.
Abbreviations and acronyms are generally avoided, except where a term is so common as to be obvious to any reader (e.g., “SSN”).
In general, property names do not indicate the type of the element, but there are exceptions.
· “Date” is fundamental to the semantics of a date element, so “date,” “time,” or “dateTime” is included in the names of temporal elements.
· Identification is fundamental to the semantics of identifier elements, so such elements will usually contain the word “identifier”: e.g., “patientIdentifier.” This is not always the case: “SSN” is clearly an identifier, but its name is clear without the suffix.
· To do: Standardize on “identifier” or “id”
· A Boolean property is semantically the answer to a yes-or-no questions and is named with a verb, usually “is” (e.g., “isDeceased).”
· Strings should be named for the semantic content of the expected string, and need no suffix.
· Quantities should be named for the semantic content of the expected quantity, and need no suffix. Names may specify the quantity (“containerDiameter”) but should not specify units.
· Open issue: harmonize barrierDeltaQuantity, bottomDeltaQuantity; perhaps as barrierDeltaDistance, bottomDeltaDistance. May need a lab SME to help rename.
· Codes should be named for the semantic content of the expected coded value, and need no suffix (e.g., “gender,” rather than "genderCode,").
· Sometimes, a coded property is a classifier that is so fundamental to the semantics of the class that it is difficult to invent a name; in these cases, it is common to use “code.” Alternatives may be unsatisfactory: “kind,” “type,” “class,” and “category” work for the first classifying property, but become confusing if there is more than one. For this reason, it is optimal to identify the property that the code classifies if at all possible. If this is not possible, we recommend using “kind.” “Type” and “class” already have specific meanings in the modeling domain, and “category” is vague enough to encompass less intrinsic qualities.
Property names should not include class names. While prefixing an attribute with the “entity” name is a common practice in relational data model diagrams, class model diagrams typically identify properties by path, so the “fully qualified” name will already include the class name. The name of a Patient is stored in Patient.name: if the attribute were called patientName, then its name would be the somewhat redundant “Patient.patientName.”
Names should almost always be singular, as almost any class or property, even if it has a multiple upper cardinality, will have a lower cardinality no higher than one. Exceptions are made for terms that are so habitually ingrained as to render a change confusing (e.g., the “Orders” package).

[bookmark: _Toc400456673]Optionality
The model will typically support optionality for most properties. This is to allow the development of a variety of use cases, some of which may have very modest requirements. As a result, very few properties in FHIM packages are required, and fewer are mandatory (i.e., required and not nullable). The idea of a patient, for instance, seems meaningless in the context of medical systems without a patient identifier, and it is mandatory. But usually, even when a property seems fairly fundamental to a class, there may be cases where it is unknown.
The UML Class diagrams generated by the modeling tool show display association multiplicity as two cardinality numbers separated by two periods (e.g., “0..1”). The first number represents the infimum (minimum/lower bound) cardinality, and the second the supremum (maximum/upper bound) cardinality. If the upper cardinality is unrestricted, the number is replaced by an asterisk (“*”). If the upper and lower limits are the same, the limit is shown once, without periods.
Association ends have a default cardinality of 1:1, in which case no label is shown.

[bookmark: _Toc400456674]Null values
The FHIM supports null values for cases in which a scenario may require a property that the partner cannot provide. It effectively makes a required property not required, but it establishes an expectation, without which virtually all properties would have to be optional.
· Each property may be nullable or non-nullable. The only distinction is that it is valid to send null instances of the former: no specific implementation of this feature is specified in the FHIM. Nullability is managed at the implementation layer.
· It is expected that HL7 V3 implementations will, where not otherwise specified, use the most general null flavor, “no information” (NI).
In addition to the general concept of “null”—no value provided—HL7 recognizes several “flavors of null,” which add metadata about why a value may be null. This feature uses a property inherited by every data type, so it can create a lot of overhead, both in type instantiation and value checking. We hold that in such cases this metadata can be modeled explicitly. “Last menstrual cycle” might be accompanied by “not applicable”; “allergies” should support “unknown.” The FHIM data types do not require features to carry this information.
There is one case where metadata may be sufficiently important to merit a data type feature: the case of coded elements that permit “other” values. Where specification designers permit the use of codes outside of an enumerated set, it may not be necessary to indicate when this option is chosen. It may be necessary, however, to explicitly state that an instance invokes the “other” option in order to distinguish “other” instances from errors so that, if the instance does not assert that it is “other,” then the receiver can validate the value against the value set. If this is necessary, then we have a requirement:
· Coded properties will support the indication that the sender has chosen a value “other” than those recommended by the specification.

[bookmark: _Toc400456675]Source Tracing
Each data element in the FHIM should document its source, so that future discussions about whether it is needed or what it means can be grounded in actual usage.
The format may depend on the source. HL7 V2 elements are commonly identified by segment abbreviation and element number within the segment, e.g., “OBX-5” for observation value.
The method of documenting these sources has not yet been determined. There are several options:
1. Include the source in the “documentation” of the field. This makes the definition a bit messy, and it would be difficult to audit programmatically, but it’s very convenient.
2. Tagged value
3. Stereotype
4. Relationship to a “Requirement” classifier
2. [bookmark: _Toc400456676]Patterns
[bookmark: _Toc400456677]Properties & Classes

It’s often obvious when a data element should be a property of a class rather than a class of its own—but not always. The criterion people use is whether the property is intrinsic to the class. But “intrinsic” may not always seem to be a usefully concrete criterion, so there are some heuristics for deciding:
1. [bookmark: _GoBack]If an element has structure of its own, it will need its own properties, and should therefore be a class. A person’s citizenship may have a date range, so the role of Citizen is a class separate from Person.
2. If an element can have an identity and existence independent of any other elements, it is a strong candidate to be a class.
3. If the element is associated with the proposed class in most or all proposed use cases, it may be a property; if it’s often not relevant, it may belong in a separate class. For example, the UniformedServicesPerson class holds rank and grade in a class separate from Person because that information is not expected to be prominent in many use cases.
4. If the element has multiple upper cardinality, it’s a candidate for a class. Since properties may have multiple upper cardinality this isn’t a strong rule, but it may indicate a possible need to treat the element separately.
5. If the element is significantly more volatile than the class, it may indicate intrinsic difference.
6. If the type of an element is primitive or a FHIM data type, then it will be an attribute.
a. Note that some data types have enough structure to blur this line. Addresses are properties, because they have a type, but that type has a fairly complex structure itself.
[bookmark: _Toc400456678]Data Types
FHIM data types are conceptual; i.e., they communicate semantic requirements in a way that subject matter experts can confirm: names are text; gender is coded. They do not necessarily contain all of the information that might be required for a particular implementation.
FHIM data types come from two places: UML primitives, and a simplified subset of the HL7 datatypes. These types must carry enough instance data to support a variety of implementation types—including HL7 V2 and V3. The FHIM types can only simplify source types where a) the source type has data that can be inferred from other data or where FHIM limits use cases to use only the selected features. No FHIM-constructed specification, for instance, will support code translations (unless and until we find a use case that requires them, at which point we will either modify the domain or the data type).
[bookmark: _Toc400456679]Explicit Properties & Coded Types
Often, a class may contain properties that are very similar, differing only in, say, a context of use. For instance, a Person may have several phone numbers, which may differ only by mode (e.g., cell or pager). When discussing requirements with domain experts, these are likely to be captured as separate requirements, and specifying them separately ensures that they remain visible to those experts.
A modeler, with an eye on maintaining consistency and minimizing repetition of things to be maintained, might create a new class with both a telecommunications address property, to capture the number, and a type property, to indicate whether it is a cell, land line, or pager. This pattern will capture the same information as the specifically modeled pattern, but it does so in a way that maximizes parallelism and, in the bargain, guards against change. If a new type of device is developed, codes for the type must be updated, but the model need not be changed, and the impact to downstream assets like specifications and application code is minimized.
The trade-off is between the clarity to stakeholders that a conceptual model offers and the abstract pattern that encourages parallelism and reduces maintenance one expects in a logical model. The FHIM supports legibility for subject matter experts. Patterns are adopted when the conceptual elements are realized, via their stereotypes, as logical specifications.
[bookmark: _Toc400456680]Entity-Role Pattern
One thing the HL7 Reference Information Model does well is separate things as they are from the roles they play. We don’t assign patient identifiers to people; we assign them to the patient roles they play. In this way, a person might play patient roles at many clinics, and each role might have different properties, but they don’t interfere with one another. This is a logical pattern, but it is one the further clarifies the business requirements. The FHIM adopts this pattern where appropriate.
[bookmark: _Toc400456681]Absence
In some cases, the absence of a thing is significant. If, for instance, a patient has no allergies, then simply not asserting that the patient has any particular allergy might leave a subsequent user of the data in question as to whether the patient actually has no allergies or the data was simply not collected. How, then, is this ambiguity to be resolved?
Several patterns meet this need; the FHIM adopts the “Explicit question” pattern.
· A separate property is included to represent the presence or absence of allergies. This property can be True (there is at least one allergy), False (there are no allergies, to the best of the recorder’s knowledge), or Null (the absence of recorded allergies does not imply that the recorder asserts that there are no allergies; this is unknown). If the value is True, the specification may be expected to require at least one allergy record. This seems to be the safest option, though by implicitly duplicating the positive assertion, it makes contradiction a possible concern.
We list the other options to make clear that we do not use them:
	Negation options not adopted
· Sufficiency: the position that the model is sufficient. This approach may work in specifications, where a sender is required to ask about allergies so that an empty “allergy” section can be asserted to mean “no allergies,” but the FHIM cannot constrain its use to such a scenario. There may be systems that record information about patients for whom allergy information has not been recorded, and it is not possible to infer whether the information meets such a criterion without explicit indication.
· Negation: instantiate an allergy, but negate it, asserting that “this notional allergy negates the existence of any undocumented allergy.” This is the approach followed by the CDA Consolidation project, and it leverages the semantics of the HL7 RIM. However, although participants following the CDA Consolidation implementation guide have an unambiguous reference, the semantics regarding what exactly is being negated are not immediately obvious to anyone not explicitly bound by that guide.
· Encoding: include a “no allergies” value in the allergy value set. This approach offers clearer semantics than negation, and it is a popular pattern as well. The problem is that it involves including a value in the value set that is not congruent to the other values. The value set is “kinds of allergies”; “none” is not a kind of allergy, and any reasoner trying to classify patients by allergy is likely to have a problem with it.

[bookmark: _Toc400456682]Laterality
We follow the SNOMED CT position that laterality is used to distinguish bilaterally symmetrical structures, e.g., “left kidney,” and not for relative positions, e.g., “left side of kidney.” For the second case, we use the term medial or lateral with respect to the structure’s position in the body: e.g., site “left kidney,” modifier “lateral aspect.” In addition, we use the pre-coordinated lateral concepts for the first case, e.g., “left kidney.” These policies almost make the terms “left” and “right” unnecessary. But they remain needed for two cases: where the bilaterally paired structures don’t have pre-coordinated concept identifiers, and where bilaterally symmetrical structures have two lateral aspects, e.g., site “lateral aspect of face,” modifier “left.”
The FHIM records a body site in two elements:
· Body site. This may be sufficient (left kidney, entire mitral valve).
· Body site modifier. This will often be necessary (e.g., lateral aspect, distal, superficial).
· Body site laterality. Ideally, only necessary for lateral aspects of singular structures (e.g., “lateral aspect of face”), but probably necessary for a period of time for bilaterally symmetrical but as-yet-unprecoordinated concepts, such as “entire cortical lobule of kidney, left.” Rather than include a model element for the concept of laterality to be used only in exceptional cases, we include the concepts “left” and “right” in the body site modifier value set, and recommend they not be used when other options are available.

[bookmark: _Toc400456683]Concept Post-Coordination
Post-coordinated expressions are a very powerful tool for expressing semantics either not anticipated by a specification developer or left unspecified due to asset management concerns. It’s easier to manage ten concept identifiers that can be combined into 200 post-coordinated concepts than to manage the 200. Proponents of post-coordination also correctly point out that post-coordinated concepts are not fundamentally different from those identified explicitly in a model or value set; they are only modeled using a different formalism.
Still, this approach concerns us for two reasons. First, the clear majority of implementations use database technology that does not parse post-coordinated expressions. This is one reason the “Term Info” project—chartered to provide guidance on using SNOMED CT concepts in HL7 V3 models—provides not only a “best” way to do things (usually involving expressions), but also an “acceptable” way (never involving expressions).
Second, the very flexibility of expression that post-coordination supports begs the question of whether a recipient will understand it. Even if the recipient can parse an expression, if the value has not been anticipated by the system designers, the system won’t know what to do with the resulting information.
The FHIM does not support post-coordination at this time.

[bookmark: _Toc385941949][bookmark: _Toc400456684]Appendices
[bookmark: _Toc400456685]Appendix A: FHIM Model Classification
There are many communities that practice data design, and each has its own idiom for discussing the objects of its concern. Often, they will use the same terms to mean similar but not identical things. Any effort to construct definitions that are satisfactory to more than a few practitioners will show how various their meanings are. We adopt the following definitions, with the hope that these explicit definitions will provide a reference point by which these communities of practice can better understand one another.
One set of terms common to many communities is that of conceptual, logical, and physical models. The characteristics of each of these model types derive from its purpose. We regard the FHIM as a combination of these types, designed to serve multiple purposes.
[bookmark: _Toc381614167][bookmark: _Toc400456686]Conceptual Models
The purpose of a Conceptual model is to document requirements in a way that is clear and perspicuous to the domain subject matter experts (SME). The conceptual model might be presented as a textual description: the only reason to use UML at this stage is that it is easier for many people to comprehend the diagram than long lists of very precise statements. Compare the following representations:
	A person is a thing
A person always has an id
A person may have more than one id

An id is an identifier
A person always has a birth date
A birth date is a date
A name is a thing
A person must have a name
A person may have more than one name
A name must have a type
Name types come from a defined list
A name always has a “last” part
A “last” name is text
A name may have a “first” part
A “first” name is text
A name may have a “middle” part
A “middle” name is text
A name may have a title
Titles come from a defined list
A name may have a suffix
Suffixes come from a defined list
	

 (
Figure
1
)

On the one hand, the text is unambiguous. No special training is required to make sense of it, whereas the picture adopts certain conventions for the representation of knowledge, and these conventions must be learned to be clear. However, after a small investment to learn these conventions, Figure 1 is easy to scan, both for initial comprehension and to identify problems. The format makes certain questions hard to miss. You might leave out the sentence “Titles come from a defined list” and not notice, but the uniformity of the datatype specifications in the model diagram would make the gap obvious.
The purpose of this model is to represent information requirements clearly, so that domain experts and implementers can agree on those requirements. Some experts may actually prefer the textual presentation; some may prefer other graphical presentations (e.g., “mind maps”). The use of UML has a slight cost in its adoption of specific conventions that must be learned. In its favor, these conventions are uniform: they only have to be learned once, and you might expect them to be understood by more people—without additional explanation—than conventions based on any particular idiosyncratic approach, however lucid that approach may seem to its author. Furthermore, these conventions are uniform, easily adaptable to the next (“logical”) phase, and, perhaps most important, they provide a framework to minimize the chances of missing information, as in the “title” example above.
[bookmark: _Toc381614168][bookmark: _Toc400456687] (
Figure
2
)[image:]Logical Models
The second type of model is “logical.” This does not imply intellectual superiority to the conceptual; rather it means that the model follows a particular logic of construction. In the person example above, it would be quite possible to create a “Person Name” datatype, model it like the Person Name class in the diagram, and simply give the Person class a “Name” property with that type, as in Figure 2. It would have the same meaning: neither way is any more “correct” than the other. Going the other way, you could make each name part (first, middle, last) its own class. There are near-infinite ways to model a domain, and in the conceptual layer, it makes no difference which one you choose. You can even use different paradigms in different areas of the model, if necessary. As a common proverb in the modeling world has it, “All models are wrong; some are useful.”
But the logical model is designed to communicate requirements to the technical team in a way that is not only unambiguous but, to the extent possible, consistent. The purpose of this uniformity is to support reuse. It’s hard to make a model homogeneous: it involves some abstraction, and homogeneity is absolutely not necessary to meet the requirements of any particular use. But a very important requirement is to be able to access information stored in one scenario for use in another. For instance, you may model blood pressure differently from temperature, but it would be useful for a vital signs application to treat them similarly: the logical model strives to make them similar enough for the application to make some generalizations. Whether the scenario simply involves two (2) clinicians looking at data in the same format but in different applications, or it involves repurposing the information in an intelligent way for clinical decision support or research, we can support that reuse by putting the information into predictable shapes. In order to do so, the logical model adopts patterns.
One such pattern is the set of datatypes that the model uses. The conceptual model examples above also specify datatypes so that experts can agree on which data type an element is (e.g., code or text), but the logical model must do so to a greater degree of specificity. At the conceptual level, “coded” simply means that there is a set of values that are valid, and that at runtime, a user must choose one of them. At the logical level, there is a more formal understanding of what exactly must be recorded—whether it includes only the legible text of the valid value, a unique non-semantic code that identifies it, the name of the system from which the code was drawn, the date at which it was drawn from that system, or other information.
 (
Figure
3
)[image:]A more striking pattern, to the casual observer, is the set of relationships classes are permitted to have. Example: one might, while capturing requirements around vital signs, prepare the next (Figure 3) conceptual diagram. (This example excludes many interesting properties in the interest of clear illustration.) The relationship seems clear enough. However, if one also wanted to represent diastolic pressure, or heart rate, or any number other measurements, the diagram would get quite crowded. This crowding would be much more severe if the diagram showed the many contextual elements that are required to ensure proper understanding of the concept. And this crowding would not simply be an inconvenience for the viewer of the diagram; it would make maintenance more difficult and error-prone, and, by complicating maintenance, it might also affect data quality, and thereby quality of care. The crowding can be alleviated if the values are put in one place.
[image:] (
Figure
4
)In this example (Figure 4 below), we can rename SystolicBloodPressure to QuantitativeObservation and put any number of observations into the “value” field. Not only does this cut down on the clutter in the diagram, but it cuts down on semantic clutter in the system. Any application designer who wants to read information patterned in this way learns the pattern once and then always knows how to find needed information, with a consistent way to identify time, or location, or provider (another Person with a different Role), or device (another participation).
Figure 5 shows another pattern. This particular pattern, relating things like people to activities via “roles” and “participations,” is the fundamental pattern of the HL7 Reference Information Model (RIM).
[image:]
[bookmark: _Ref385939199]Figure 5
It’s not the only pattern one could use, but it is flexible enough to be used very consistently, and it forms the basis of the Clinical Document Architecture (CDA), one of the most widely adopted healthcare information specifications.

[bookmark: _Toc381614169][bookmark: _Toc400456688]Physical Models
The third level of model is the Physical, also called the implementation layer. A physical model imposes design constraints that are unique to a particular implementation technology.
A physical class model is what is actually used by executable software to decide how to behave.
In the relational database world, a physical data model includes specification of platform-specific constraints (e.g., data types and lengths such as “varchar 20”, uniqueness and primary keys, valid values, and indexes to speed up searching). A physical model is what is actually used by executable software to decide how to behave.
[bookmark: _Toc400456689]Comparisons among Model types
The beauty of the logical model is that it defines all of the requirements from the conceptual model, but it does so in a way that is predictable. Because it’s predictable, it can be used by automatic tools to generate derivative products including—given enough information about a target physical platform—physical layer specifications. (Actually, the specification could be considered “logical” rather than “physical,” but it’s a third level in the interoperability world.) Given a sufficiently detailed logical model, no one ever needs to manually design a physical model—though it may be advisable to check the product to make sure the designer and the technologies share the same assumptions.
There are those who, impressed with the power of the logical model, hold that the conceptual model is not necessary. It is true that in some environments, it may be possible to document requirements and shape them into a logical model simultaneously, but such environments would be rare—characterized by small, closely knit sets of stakeholders, uniformly knowledgeable in both medicine and modeling practice. The set of communities that meet these criteria is likely to be small.
[bookmark: _Toc381614170][bookmark: _Toc400456690]The FHIM Kind of Model
The FHIM is a hybrid of model types. It looks much like a conceptual model, in that it does not specify classes that are present purely in order to articulate a logical pattern. Most classes have properties that seem inherent at the conceptual level, but too specific to be part of a logical design (e.g., livingArrangement for Person). In order to be put into a RIM-aligned specification, these properties would have to be converted into separate observations.
However, the FHIM classes have UML stereotypes that map them into these patterns. The Person class, when transformed into a RIM-compliant artifact, will become an Entity of type Person, with an associated livingArrangement observation.
While the FHIM looks like a conceptual model, it embeds logical patterns in UML profiles to support the generation of logical specifications. Currently, the FHIM supports transforms to the HL7 V3 RIM and National Information Exchange Model (NIEM). The rules for these transformations are embedded in UML stereotypes, which the use cases will use to convert, e.g., the FHIM person class into the CDA person entity, with associated observations for things like livingArrangement. The specifics of these patterns, and their implications for conceptual modeling, are documented in the Appendices.
The meta-pattern that the FHIM follows is largely inspired by the HL7 RIM. It does so partly to support implementation in V3, and partly because some general pattern was needed, and the RIM is familiar to many in the interoperability domain. As a result, when a printed class name includes its generalization (e.g, “Person (living entity)”), the generalization will usually be congruent to a RIM class.

[bookmark: _Toc400456691]Appendix B: Terms and Abbreviations
The list below includes definitions of terms and of abbreviations used in the text body for concisely repeating lengthy terms they represent.
	Term
	Definition

	CDA
	Clinical Document Architecture, a specification for representing medical information in documents based on the HL7 V3 Reference Information model

	Diagram
	A set of visual representations of a subset of elements of a model—typically, in the FHIM, a “class model diagram” consisting of classes, properties, and relationships bounded by a package

	FHA
	Federal Health Architecture, a program of the Office of the National Coordinator to define a shared architecture for the Federal domain

	FHIM
	Federal Health Information Model, the part of the FHA concerned with representing information exchange requirements in a UML model

	HIT
	Health Information Technology

	Model
	A formal representation of a business domain

	NIEM
	National Information Exchange Model

	ONC
	Office of the National Coordinator

	Package
	A subset of a model, designed to facilitate ease of comprehension

	RIM
	Reference Information Model, usually referring to the HL7 V3 model

	RSA
	Rational Software Architect, a tool for building UML models

	SME
	Subject matter expert

	SNOMED-CT
	Systematic Nomenclature of Medicine, Clinical Terms, an internationally recognized standard terminology

	UML
	Unified Modeling Language

FHIMS WG	 7 October 2014 	Page 2 of 16	
FHIMS WG 7 October 2014 	Page 1 of 16	

image3.emf
 class Class Model

Person

- identifier :II [1..*]

- dateOfBirth :TS

- name :PN [1..*]

image4.emf
 class Class Model

Person

- identifier :II [1..*]

- dateOfBirth :TS

- name :PN [1..*]

SystolicBloodPressure

- value :INT

0..*

image5.png
Person

Quanitativeobservation
~id identiner[1.] T value meAL
© cateorinn TS 0517 pe o

neme £

-_units D

image6.emf
 class Class Model

Person

- identifier :II [1..*]

- dateOfBirth :TS

- name :PN [1..*]

QuantitativeObservation

- value :INT

- type :CD = Systolic BP

- units :CD

Role

- type :CD = Patient

Encounter

- dateTime :TS

- location :ST

- reason :CD

Participation

- type :CD = Subject

0..*

0..*

0..*

0..*

image1.jpeg

image2.png
Person

i deniier (1]
ateOtEitn TS

Persontiame.

~ pe <0
st

© migdle ST
et

© e €0

© sx cD

